한계 없는 무선통신 실현을 위한 기술 동향

Research Trends on Limitless Connections in Wireless Transmission and Access Technologies

The capacity of wireless communications has been considered to be restricted by their fundamental limits, which were first formulated by Shannon in 1948. These limits are for the communication environment that is composed of a transmitter and receiver pair. However, there are usually more than one simultaneously communicating pairs in the environment. In such cases, the capacity is not known. Moreover, performance requirements have been diversified with the development of technology. We believe that wireless communication technologies will eventually progress toward limitless connections. Various wireless transmission and access technologies are introduced in order to overcome their limitations.

* DOI: 10.2248/ETRI.2019.J.340106
I. 머리말

1948년 C. Shannon은 전송 채널 용량의 한계를 제시하며 통신 발전의 토대를 세웠다. 하지만 이러한 한계는 단말 송수신기로 구성된 통신 환경에서 한계이며, 아직까지 다수 개의 송수신기로 구성된 일반적인 통신환경에서 이론적 한계는 규명되지 않은 상태이다. 또한, 전송 속도 위주 발전에서 빠르고 5G 이동통신은 지연, 연결 수, 신뢰성 등 다양한 요구사항을 만족하는 기술을 요구하고 있다. 항우 무선통신에 대한 요구사항은 더욱 더 늘어날 것이고, 이러한 요구사항을 만족하기 위한 무선통신기술의 발전은 궁극적으로 한계 없는 무선통신기술 실현이라는 목표를 지향할 것으로 간주된다.

본 고에서는 무선통신기술의 다양한 한계를 짐돌고, 이러한 한계를 극복하기 위한 이론 및 기술적인 사례와 동향을 소개한다.

II. 이론적 한계

1. 단일 송수신기 환경 이론적 한계

1948년 C. Shannon이 정립한 정보이론은 무선통신의 이론적 한계를 제시하여 왔다(1). 전송률의 대표적 이론적 한계인 용량(capacity)은 특정 방식을 통해 달성할 수 있는 전송률의 하한과 특정 값 이상 달성할 수 없는 상한이 결정하는 지점이다. 전송률의 하한을 보이는 방식은 랜덤하게 무작위로 생성된 무작위의 길이를 무한대까지 증가하게 되면 큰수의 법칙(law of large numbers)에 의해 랜덤한 성질이 사라지고, 평균 오류율이 0으로 수렴하는 것을 보이는 것이 일반적이다(2). 전송률 상한을 보이는 방식은 수학적 부등식이나, 특정 조건을 이환하여 임계 값보다 전송률이 줄 수 없을 보이는 것이 일반적이다. 정보이론에서의 용량은 어떠한 방식을 사용하더라도 넘어낼 수 없는 한계를 의미한다.

아래 송신전력의 평균(\(P\))과 잡음전력의 평균(\(N\))으로 표현된 통신에서의 용량(C)으로 유명한 Shannon 한계는 하나의 송신기와 하나의 수신기로 구성된 가우시안 채널에서의 한계이다.

\[
C = \frac{1}{2} \log \left(1 + \frac{P}{N} \right).
\]

하나의 송신기와 하나의 수신기로 구성된 통신 환경에서 용량을 증가시키는 대표적인 방식이 송수신기에 다수 개의 안테나를 활용하는 것이다. 송수신기에서 채널 정보를 알고 있으며, 채널의 특이값 문제를 이용하여 송수신 랜덤성과 특이값에 반비례한 전력 향상을 통해, 송신자의 안테나 수에 비례한 용량 증가가 가능하다는 것이 규명되었다(6). 다수 안테나는 용량 한계를 아니라 동일한 데이터를 전송하여 오류율을 낮추기 위한 방식으로 활용될 수 있으며, 용량 한계와 오류율 감소와는 서로 tradeoff 관계에 있다(7).

2. 다수 송수신기 환경 이론적 한계

Shannon 한계는 단일 송수신기로 구성된 통신 환경의
에서의 한계이다. 그러나 일반적인 통신 환경은 다수의 송신기 혹은 다수의 수신기로 구성된 경우가 대부분이다. 단일 송신기로 구성된 통신 환경에서는 가우시안 잡음과 같은 잡음 처리가 중요한 문제였으나, 다수 송신기로 구성된 통신 환경에서는 잡음보다는 간섭 처리가 매우 중요한 문제가 된다. 간섭을 처리하는 방식은 크게 간섭을 잡음처럼 취급하거나, 간섭을 회피하거나, 간섭을 제어하는 3가지 방식으로 구분할 수 있다. 현재의 통신 시스템은 대부분 간섭을 잡음처럼 취급하거나, 사용하는 자원을 점차가 있게 할당하는 직교 방식을 활용하여 간섭을 회피하는 방식을 사용하고 있다. 간섭 회피를 위해 서로 다른 자원을 활용하여 데이터 송신하는 방식은 복잡도를 낮출 수 있지만, 송신기가 수가 증가함에 따라 각 송신기간 집중할 수 있는 자원이 감소하기 때문에 전송률 감소를 피할 수 없다.

다수 송신기로 구성된 통신 환경에서는 직교 방식을 통한 이론적 한계 용량에 도달할 수 없다. 정보이론에서는 다수 송신기와 하나의 수신기로 구성된 통신 환경을 다수접촉채널(multiple access channel), 단일 송신기와 다수 수신기로 구성된 통신 환경은 방송채널(broadcast channel), 다수 송신기와 다수 수신기로 구성된 통신 채널 간섭채널(interference channel), 이라고 한다[8].

다수접촉채널은 다수 개의 송신기가 존재함으로, 전송률의 이론적 한계는 용량이 하나의 값이 아닌 영역으로 구성된다. 다수접촉채널에서 용량에 도달하는 방식은 수신기에서 수신 신호의 세기를 따라 간섭을 순서대로 제거하는 방식을 통해 용량에 도달할 수 있다.

일반적인 방송채널에서는 아직까지 용량이 규명되지 않았으나. 가우시안 방송채널의 경우, 송신기에서는 신호를 뒤에서 전송하는 중첩회화 방식을 사용하고 수신기에서는 간섭 제거하는 방식인 용량에 도달하는 방식들이 규명되었다. 다수 안테나 가우시안 방송채널의 경우에는 각 안테나가 미치는 간섭에 맞추어 데이터를 전송하는 다트페이퍼 코딩 방식을 활용하여 용량에 도달할 수 있다[9]. 일반적인 간섭채널의 경우에는 가장 단단한 두 개의 송신기와 두 개의 수신기로 구성된 환경에서도 용량이 규명되지 않았으며, 간섭이 신호보다 센 경우는 간섭 제거하는 방식으로 용량에 도달할 수 있다. 두 개의 송신기로 구성된 간섭채널에서 현재까지 최적의 방식은, 송신기에서 두 수신기가 복호해야 하는 신호와 잡음처럼 취급해야 하는 신호를 뒤에서 전송하는 중첩방식 방식을 사용하고, 수신기에서는 일부를 복호하여 일부는 잡음처럼 취급하는 방식인 Han-Kobayashi 부호화이 다. 가우시안 간섭채널에서 용량은 아직 규명되지 않았으나, Han-Kobayashi 부호화 방식을 사용하면 각 송신기 쌍의 전송률과 용량 차이가 1/2bit보다 크게 안타깝다는 것은 규명되었다[10]. 간섭채널에서 전송률의 한계인 용량은 발해지지 않았으나, 신호대잡음비가 높은 영역에서 간섭채널 용량은 단일 송신기 통신 환경 용량으로 나가는 경우도 규명되었다. 자료도는 독립적으로 전송 가능한 신호의 수를 의미하며 자료도가 증가하면 용량도 같이 증가한다고 할 수 있다. K개의 송신기 쌍으로 구성된 간섭채널에서 K차원 공간에서 간섭신호를 K/2 차원으로 정렬되도록 전송하는 간섭정렬 방식을 통해 자료도가 K/2가 된다는 것이 규명되었다[11]. 단일 송신기 통신 환경에서 송신기가 K개의 다수 안테나를 사용할 경우는 K/2이고, K개의 수신기로 구성된 간섭채널에서는 자료도가 K/2가 아닌 K/2로 감소하며, K에 선형비례하므로, 간섭채널에서도 수신기 쌍이 증가할 경우, 용량도 이에 비례하여 증가할 수 있다. 즉, 전송 방식을 사용할 경우, 용량은 일정한 값으로 고정되며, 간섭정렬 등의 방식을 사용할 경우, 용량은 선형적으로 증가할 수 있다.
III. 용량/지연 한계

1. 테라헤르츠 대역 전송 기술

테라헤르츠파는 일반적으로 0.1~10THz 대역의 주파수 대역을 지칭하는데 전자기파 스펙트럼에서 보면 원적외선과 밀리미터 중간 영역에 해당하며 현재까지 많은 사용화가 되지 않은 미개척 주파수 전자파 자원이 다. 테라헤르츠 주파수 대역의 분자 유동의 전동 주파수 영역이기 때문에 물질의 성분 분석에 적합하여 물질의 질량, 분자, 생명 연구 등을 위한 분광 시스템, 측정한 분광 특성을 2차원 또는 3차원의 이미지로 형상화하는 이미징 시스템에 많이 연구되어 왔고 널리 주파수 대역폭을 이용한 초고속 무선 통신 시스템에도 응용이 가능하다[12, 13].

테라헤르츠 주파수 대역의 무선통신 적용을 위한 전파 모델 연구에 대해 기본 데이터인 전파 특성을 분석한 실측 데이터는 제공되지 않으며, 기존 논문에 나타난 테라헤르츠 주파수 대역에서 채널 모델링도 Short-range에 국한된 실내 채널 모델링이 대부분이다. 테라헤르츠 주파수 대역을 무선 채널로 규정하는 표준화 단체로 IEEE802.15.3d가 있는데 테라헤르츠 주파수 대역에서 사용할 수 있는 4가지 응용분야를 정의하고 이 중에서 무선 백호 사무실에서 해당하는 응용분야의 채널 모델은 LOS만을 가정하여 격자 손실량을 고려하고 있다[14]. 3GPP에서는 5G NR를 위해 100GHz까지 지원하는 채널 모델을 정의하고 링크 머신 등의 시뮬레이션 용도로 NLOS/LAT를 합쳐서 5가지 CDL/TTL 채널 맵 계수를 참조용으로 제시하고 있으나 200GHz 이상에 대해서는 아직 제공하고 있지 않다[15].

앞서 언급한 대로 200GHz 이상의 테라헤르츠 주파수 대역에 대한 표준은 2017년도에 표준화한 IEEE 802.15.3d이다. IEEE 802.15.3d에서는 275GHz 이상 주파수 대역에서 근거리 및 무선 백호용 규격을 발표하였다[표 1] 참조. 대역폭은 2.16GHz부터 전체 69.12GHz까지 여러 가지 단계의 대역폭을 지원하고 π/2 8-PSK에서부터 64QAM까지 고차변조방식을 사용하는 것으로 되어 있다[16]. 이 규칙은 최초의 표준 규격이기 했지만 현재 기술로 근거리로 제외한 응용에서 구현은 매우 어려운 규격이다.

테라헤르츠 주파수 대역 기술에 대한 중요성이 늘어짐에 따라서 유럽연합의 Horizon 2020에서는 Tempos와 Terranova 같은 Project를 지원하여 수행하고 있다. Tempos Project는 초광래 대역 속도를 이용하여 1Tbps 급 전송을 위한 기술을 개발하는 것을 목표로 하고 있고, Terranova Project는 275GHz 이상 주파수 대역에서 광 손실이 제한적인 1Tbps급의 안정적이고 무수생활 속도의 백호 링크를 구성하는 것을 목표로 하고 있다[17, 18].

테라헤르츠 주파수 대역의 전력은 안테나는 대부분 고전력 반사판 안테나이고 근거리용으로 300GHz 대역에서 8×8 배열 구조를 적용한 백호 메시 안테나가 발표되었다[19]. 테트론 기판을 사용하였으며 최대 이득은 16dBi이다. 이론상 1,000 개의 방송 소자를 사용할 경우 30dB의 이득을 얻을 수 있고 현재 200∼300GHz 대역에서의 개발전 백호 메시 안테나가 비슷한 수준이다.

단방향 링크 속도에는 하지만 테라헤르츠 주파수 대역에서 무선통신에 대한 연구결과가 많이 나오고 있
다. 대표적으로 일본의 NTT에서는 광학기반의 무선 송수신 장치부터 오랫동안 테라헤르츠 네트워크 시스템 개발을 해오다가 자체 InP 공정으로 소자를 개발하고 외부 에 도파관 인터페이스를 가지는 고이득 안테나를 사용하여 무선전송 시험을 하였다. 최대 32GHz 대역폭에 16QAM 변조방식을 사용하여 100Gbps 전송 시험을 하였다. LO는 체계 방식을 사용하였고 헤테로다인 방식의 구조를 사용하였다[21].

특히 루퍼테러대학에서는 SIOe 기반 소자에 은접관테나를 사용하여 240GHz 대역에서 65Gbps급 무선 전송 시험을 진행하였다. 직접변환방식을 사용하였고 LO는 16배 체계방식으로 외부에서 입력하는 구조로 되어 있다. 안테나는 은접관테나로 구현하였고 안테나 이득을 높이기 위해 실리콘 멘즈를 추가로 사용하였다[21].

현재까지 테라헤르츠 주파수 대역에서 초광대역 폭신호를 이용하는 무선통신 기술은 근거리 전송 진보만 있지만 100Gbps 이상의 전송이 가능함을 보였으며 전기적 소자 또한 300GHz 이상 특성을 보이고 있어 출력전력과 배열 안테나에 대한 기술이 향후는 충분히 이동통신으로 적용이 가능해 보인다.

2. 무선케이싱 기술

무선 캐싱 기술은 컨텐츠를 기지국이나 단말의 저장장치에 저장하고 사용자가 요구할 때 저장된 컨텐츠를 제공하는 기술로, 백홀 링크의 부담을 줄일 수 있을 뿐 아니라 사용자에게 저지연시간 서비스를 제공할 수 있는 유망 기술로 하체와 산업계의 주목을 받고 있다. 더불어 저장장치의 단위 용량당 가격은 시간이 지남수록 낮아지고 있기 때문에 저장장치를 통신 강화 목적으로 사용하는 무선 캐싱 기술은 점점 더 각광을 받고 있다.

무선 캐싱 기술은 저장장치의 위치에 따라 연구 방향이 다르게 진행되어 왔다. 송신기에 저장장치가 위치한 경우에는 백홀 링크의 부담을 덜기 위한 목적으로, 송신기의 저장장치에 어떤 콘텐츠를 얼마나 저장하는 가에 집중되어 연구되어 왔다. 무선에 가까운 콘텐츠 수에 비해 이용할 수 있는 저장장치의 용량은 유한하기 때문이다.

수신기에 저장장치가 위치한 경우에는 저장장치에 저장된 정보를 부가 정보로 이용하여, 네트워크 전송 용량을 증가하는 방향으로 연구가 진행되고 있다 [26], [27]에서는 다수 수신기에의 저장장치에 전체 콘텐츠의 일부분을 저장하고, 다수 사용자의 서로 다른 콘텐츠 요청을 인덱스 부호화 형태로 결합하여 전송하는 기법을 제안하였다. 부호화된 전송 신호는 수신기에 자신의 저장장치에 저장된 부가 정보를 활용하여 자신의 필요에 따라 파일을 복호화한다. 즉, 서로 다른 사용자들에게 적절한 사용자 그룹화 및 인덱스 부호화를 통해 멀티캐스트 신호를 데이터를 동시에 전송함으로써, 네트워크 전송 용량이 크게 증가할 수 있다.

기존 무선 캐싱 기술과는 주로 에코리 용량, 위치 및 무선 전송기법 등과 같은 물리적인 요소를 고려하여 설계 및 이론적 성능 분석에 대한 연구를 진행하였다면, 최근에는 사용자의 사회적 정보 및 이동성 등 다양한 변수들을 고려한 무선 캐싱 기술에 대한 연구가 진행되고 있다. [28]에서는 물리적인 요소와 사회적 인원을 합게 고려하여 사용자 사이의 유 효 거리를 정의하였고, 유 효 거리와 게임이론 기반으로 컨텐츠를 저장하는 문제를...

그 외로 다중 송신기 환경에서 협력 제어 및 전송기법에 대한 연구[31], 비지역 다중액세스 기반 캐싱 전략 연구[32] 등 다양한 통신 시스템 환경에서 활발히 연구되고 있다.

IV. 접속/간섭 현계

1. 비짓도 다중화 방식

IMT-2020 표준 ITU-R M.2410-0 문헌에서 제시되는 5G의 usage scenario는 크게 eMBB, URLLC, 그리고 mMTC로 나누어진다. 그 중 mMTC는 machine device 간의 통신을 목표로 한 부분인데, connection density가 KPI가 된다. 그러나 IoT 환경에서 초연결 기술의 경우 usage scenario는 mMTC에 속하지만, 트래픽 발행 특성을 높이려면 mMTC 대비 매우 높은 편이 고, 1,000,000개의 device가 접속을 유지하는 connection density 요구사항을 만족 시켜야 하는 환경과는 거리가 멀다.

IoT 시나리오에서 운용되는 무선 서비스의 커버지

는 보통 공장 내에서 발생되어 있기 때문에 미디어스의 질적적인 수는 IMT-2020의 mMTC scenario의 요구사항이 높지 않다. 공장 가동 명령을 무선통신으로 전달하는 경우 오로지 connection density보다는 지역과 신뢰도가 중요한 성능지표라고 볼 수 있다. 그렇기 때문에 주어진 주파수 대역 내에서 트래픽 빈도가 mMTC 보다 비교적 높은 환경에서 최대한 다수의 데이터가 동시다발적인 통신을 할 수 있고, 신뢰도가 일정 수준까지 보장되는 무선 기술이 제공되어야 한다.

따라서 IoT환경에서는 미디어스 간의 초연결과 신뢰도 및 저지연을 담당하기 위한 신호망의 다중화 방식의 선정이 중요하다. 다중화 방식은 기존 OFDMA와 같은 직교 방식과 최근에 각광을 받고 있는 비직교 방식을 선정할 수 있다. 먼저 직교 방식은 각 미디어스의 접속 링크의 교착이 보장되기 때문에, 간섭은 무선 신호의 환경으로 극한이 되어 전송 신뢰도 측면에서 유리하다고 볼 수 있다. 또한, 직교방식은 보장이 되는 신호이기 때문에, 수신기는 저득질도로 구현될 수 있다. 다만, 신호 링크 신호 간의 간섭을 보장하기 위한 미디어스 별 독립적인 신호 맥락 차원 분배가 이루어지지만, (그림 1)과

![그림 1] 직교 방식과 비직교 방식 전송 방식의 time 및 frequency 차원 분배 방식 차이

같이 상향링크에 할당된 자원은 다중화되는 상향링크 전송의 다바이스 수만큼 반복하여 제공이 된다.

따라서 다바이스 수가 많으면 많은수록 다바이스별 상향링크에 할당되는 자원의 양은 줄어들게 된다. 자원이 줄어들게 되면 우선 무선통신의 신뢰도에 영향을 받을 수 있다. 또한, 자원의 부족함에 따라 동시에 많은 상향링크를 지원하기 위해 자연이 더 커지는 상황이 발생할 수 있다.

반면에 비직교 전송은 다바이스 수와 관계없이 다바이스는 다중화를 위해 주어진 대역폭을 다 공유하여 상향링크를 할당받고 전송하는 방식이다. 다만, 상향링크 신호가 간 간의 작교성이 보장되지 않기 때문에 상향링크 간의 간섭은 존재한다. 비직교 전송은 (그림 2)와 같이 상향링크 간의 간섭을 수신거에서 간섭 제거 기술을 통해 비직교 방식의 간섭을 극복하여 직교 방식에 비해 높은 connection density를 유지할 수 있다.

또한, 수신기 방식이 single user decoding이 아닌 벡터 형태로 maximum likelihood로 송신 신호를 추정하는 방식이라면 비직교 방식이더라도 신뢰도 모델을 탑재할 수 있다. 그리고 비직교 방식은 직접방식 대비 자원을 많이 할당받기 때문에, 자연이 줄어들지 않으면서 더 유리할 수 있다.

상향링크 전송을 위한 자원 할당 scheduling은 grant 방식이 아닌 대부분 grant-free 전송으로 미리 상향링크 자원을 할당받는 형태로 구성될 가능성이 높다. IoV 환경의 경우, 트래픽의 특성상 일정한 주기를 가지고 송수신을 하고, 데이터의 크기 자체가 크지 않기 때문에 grant 방식을 적용하는 데 따른 오버헤드를 줄이고 자연 및 연결성을 높이는 측면에서 유리한 grant-free 방식이 주로 적용될 가능성이 높다.

2. 산파형 기술

5세대에 걸쳐 이동통신이 발전함에 따라 이동통신 인프라를 활용하는 응용 서비스가 다양화되고 사용자의 트래픽 사용 요구가 더 증가됨에 따라, 이동통신 서비스는 더 높은 전송률뿐만 아니라 더 높은 전송 자연 그리고 더 높은 전송 신뢰성을 요구하고 있다. 이동통신 세대 간 진화에 있어 기저가 되는 요소는 파형 기술과 다중접속 기술이라 할 수 있다. 다수 사용자의 효율적인 데이터 송수신을 위해서는, 다수 사용자를 시간, 주파수, 공간, 코드 도메인 상에 상호 간섭 없이(또는 상호 간섭을 용이하게 극복할 수 있으면서) 주파수 효율적으로 접속할 수 있는 파형 기술이 요구된다. 1세대 이동통신에서는 Frequency Division Multiple Access (FDMA) 기술이, 2세대 이동통신에서는 Code Division Multiple Access (CDMA)와 Time Division Multiple Access (TDMA) 기술이, 3세대 이동통신에서는 Wideband CDMA/WCDMA 기술이, 4세대[33] 및 5세대[34] 이동통신에서는 Orthogonal Frequency Division Multiple Access (OFDMA)와 Single Carrier Frequency Division Multiple Access (SC–FDMA) 기술이 적용되고 있다.

4세대부터 하향링크 광대역 전송을 위해 다중반송파 변조 기법 OFDMA(TDMA와 FDMA의 결합 형태)가 도입되었는데, 이에 대한 파형 기술로서 높은 주파수 효율, 저주파도 변조, 제한 지연 환경에 대한 강점성, 비선택적 주파수 채널에 의한 단순한 동화구조, 다중인테르나 기술의 용이한 확장성 등 장점을 갖는 Cyclic Prefix Orthogonal Frequency Division Multi-plexing (CP–OFDM)이 채택되었다. 상향링크에서는 Peak to Average Power Ratio (PAPR) 완화를 위해 CP–OFDM의 Inverse Fast Fourier Transform (IFFT) 수행 이전에 입력 데이
터 심볼들의 Discrete Fourier Transform(DFT) 전처리를 수행하는 Single Carrier Frequency Division Multiplexing(SC-FDM)이 채택되었다. 5세대에서는 4세대 파형 기술에 추가적으로 대역/단말 특성에 적합한 대역의 주파수 조정을 가능하게 제공하는 다중 뉴럴로지(neurology)를 지원함으로써, 다양한 대역을 커버하고 재널 환경과 인연 요구사항에 적합한 파형을 유연하게 제공할 수 있다.

이러한 다중접속 기술을 가능하게 하는 파형 설계에 있어, 신호 전달을 발생시키는 요인들로는 원 신호의 진폭 및 진폭 위상, 사용자 간 신호 간섭 및 반송파 간 간섭, 사용자 간 심볼간 간섭 및 반송파 간 간섭, 파형의 비날짜성을 통한 내재 간섭, 인접 채널(또는 대역) 간 간섭, PAPR, 구현/계측 복잡도 등을 고려할 수 있다.

원 신호의 진폭 및 진폭 위상은 채널 세장/도플러 확산, 반송파 주파수/심볼 타이밍/플롭틀 크라오프셋, 반송파 위상 잡음 등에 의해 발생한다. 진폭 및 진폭 위상은 채널 주파수와 추정된 채널을 이용한 동화 과정을 통해 보상될 수 있으나, 진폭 위상의 경우 복호 성능에 영향을 줄 수 있다.

사용자 간 심볼 간 간섭은 다중 경로에 의한 채널 지연 확산과 심볼 타이밍 오차에 의해 발생한다. 즉, 채널 지연 확산으로 인해 이전 심볼의 일부 심볼들이 현재 심볼에 중첩되거나, 심발신기 사이 타이밍 동기 오차로 인해 수신 간섭 심볼에 국한된 심볼들이 포함되며, 보간하여, 타 심볼로부터의 간섭을 받게 된다. 이를 완화하기 위해 보호 구간을 삽입하거나, 오프셋 및 프로파일링과 같은 보간 방법을 통한 시간적 간섭을 최소화하는 방법이 있다. CP-OFDM 및 Zero Prefix OFDM (ZP-OFDM) 기술이 전자에 속하고, Pulse-Shaped OFDM(PS-OFDM)[35] 및 Filterbank Multicarrier (FBMC)[36] 기술이 주자가 속한다.

사용자 간 반송파 간 간섭은 송신기/수신기의 이동성 또는 채널 경로상 반사체/산란체의 이동성에 의한 채널 도플러 확산과 반송파 주파수 동기 오차에 의한 반송파 주파수 오프셋, 송신기 사이의 심볼정 크라오프셋, 반송파 주파수의 주변 주파수들에서 나타나는 반송파 위상 간섭에 의해 발생한다. 반송파 간 간섭을 완화하기 위해서는 반송파 간섭을 중대시키거나 주어진 반송파 간섭에 대해 주파수 상에 잘 국소화된 파형을 사용하는 것을 고려할 수 있다. 5세대에서는 밀리미터파와 같이 높은 대역에서의 반송파 주파수 오프셋 및 위상 잡음에 대한 강화성을 위해 센터미터 대역의 대비 4~6배 큰 부채널 간접적 지원한다. 한편, Windowed OFDM(W-OFDM)[37], PS-OFDM 및 FBMC 기술들은 오버랩핑 및 주파수 상에 잘 국소화된 파형을 적용하여 부채널 간섭의 증가 없이 반송파 간 간섭을 줄인다.

다중반송파 변주조 기반의 상형징 코드송신에는 복수의 단말기들이 서로 다른 또는 중첩된 시간 및 주파수 자원을 할당받아 다중접속을 한다. 서로 다른 시간 및 주파수 자원을 할당받는 경우하더라도, 기저역과 서로 다른 거리에 떨어져 있는 단말기들로부터 수신기에 도달하는 신호들의 도착 시간이 전파 지연에 의해 상이할 수 있다. 따라서 이를 일치시키기 위해 송신 타이밍을 조정할 수 있다. 송신 타이밍 조정을 생략하거나 송신 타이밍 조정 후에도 살아있는 사용자 간 심볼 타이밍 오프셋 그리고 사용자가 동적으로 수행하는 주파수 동기화 및 심볼 정화로 인해 사용자 간 반송파 주파수 및 심볼 정화가 발생할 수 있다. 이로 인해 사용자 간 심볼 간 간섭과 사용자 간 주파수 간 간섭이 초래되고 결국 복호 성능을 영향시킬 수 있다. 사용자 간 서로 다른 시간 및 주파수 자원을 할당받아도 복수의 연속적인 심볼(이하 부프레임으로 통칭) 내 복수의 연속적인 부채널(이하 부파드로 통칭)을 할당 단위로 사용하는 경우, 사용자 간 심볼 간 간섭 및 사용자 간
주파수 간 간섭은 한대 단위의 경계에서 영향력이 크므로, 부채도 단위의 필터링을 통해 부채도 경계의 부작용과 간 간섭을 완화시키는 Filtered OFDM(F-OFDM)[38] 및 Universal Filtered Multicarrier(UFMC)[39] 기술이 제안되었다.

상기에서 언급된 사용자 내/간 반송파 간 간섭 완화 과정에서의 채널 주파수 응답을 살펴보면 사이드로 브가 급격하게 감쇄되는 것이 특성이다. 따라서 각 패스 또는 콘-오프된 패스를 사용하는 CP-OFDM 대비 보호 부작용을 적게 사용하여 주파수 효율을 향상시킬 수 있다. 단, PS-OFDM 또는 F-OFDM의 경우에는 직교성과 타협되지만 높은 렌즈의 막크 성능 초래하지 않도록 잘 설계된 파형을 사용한다.

파형 설계에 있어 중요한 성능 요소 중 하나는 주파수 효율이다. 주파수 효율은 십별 간격 T와 부작용 간격 F에 의해 좌우될 수 있다. 일반적으로 TF는 1보다 크거나 같은 값을 가지고, 1에 가까울수록 높은 주파수 효율을 갖는다. Balian–Low 이론에 의하면, 복소수 상에 TF=1이면서 시간 및 주파수 상 모두에 잘 국소화되고 직교성을 갖춘 파형은 존재하지 않는 것으로 알려져 있다. 한 예로, CP-OFDM의 경우, 임펄스 응답이 시간 런던으로 시간적으로 잘 국소화된 반면, 주파수 응답의 경우 sinc 필수로 주파수 상에서는 국소화되어 있지 않다. UFMC에서는 Gaussian 필수를 Isotropic Orthogonal Transform Algorithm(IOTA)를 통해 시간 및 주파수 모두에 대해 직교하는 필수를 얻어내고, 실수 상에서 TF=2인 경우에 대해 시간 및 주파수 상 모두에 잘 국소화되어 있다. TF=2에 의한 전송을 손실을 극복하기 위해 실수로 구성된 시간–주파수 격자에 오프셋을 갖는 허수로 구성된 시간–주파수 격자 상의 추가적으로 데이터를 전송하는 기법을 사용한다. UFMC는 복소수 데이터 신호의 전송이 어려워 다중인테리기술의 적용이 어렵고 오버랩핑된 필수 사용에 의해 Transmission Time Interval(TTI)의 증가와 Time Division Duplexing(TDD)에서의 합성 영이지 않은 단점이 있다. 한편, Balian–Low 이론에서의 TF=1 조건은 TF=1을 통해 직교성을 허용하면서 시간 및 주파수 상 모두에 잘 국소화된 파형을 사용하는 비직교 다중 반송 방식[40]도 제안되었다.

지금까지 소개한 파형 기술은 십별 단위의 변복조가 가능하다. 최근에는 채널 도플러 확산에 상당히 피해를 주는 주파수 촉진이 아니라 시간 촉진을 함께 고려한 Orthogonal Time Frequency Space(OTFS)[41] 변복조 방식이 제안되었다. 십별 단위로 IQ FFT를 수행하는 대신, Discrete Symplectic Fourier 변환을 통해 부작용과 십별 상에 함께 변복조를 수행하는 방식으로, 각 데이터 십별을 사용하는 모든 부작용과 복수의 십별에 스프레드 시키며 모든 데이터 십별이 동일한 채널을 겪도록 한다. 이는 사용자 십별과 부작용(또는 주파수 도메인) 및 십별(또는 시간 도메인)으로 구성되는 격자 대신, 지역 도메인 및 도플러 도메인으로 구성되는 격자에 다중화하는 방식으로 해석할 수 있으며, 전송하는 동안 채널 지역 및 도플러 확산 자체가 시변하지 않는다면 이들에 의한 성능 영향을 방지할 수 있다. 따라서, 초고속이동 환경에서 CP-OFDM의 대안 방식으로 고려될 수 있을 것으로 기대된다.

상기에서 소개한 비와 같이 5세대 이동통신에 이르기까지 표준에 제한된 파형 외에도 다양한 파형들이 연구되어 왔으나, 이들의 실제적인 적용에 있어 높은 PAPR, 높은 구현/계산 복잡도, 다중인테리 기술과 같이 타 기술의 확장 용이성 등에 의해 그 이용이 제한되거나 표준에 채택되지 않았다. 하지만, 시스템 접속도가 증가되어 기저대역의 처리 속도가 개선되고 아날로그/RF 소자의 가격이 저렴해짐에 따라, 다양한 환경에서 다양한 서비스 요구사항을 반영할 수 있으며, 앞에서 살펴본 비와 같이 다양한 원인에 의한 원성호 왜곡 및 간섭에 대해
강의 내용을 갚거나 이들을 근본적으로 제거할 수 있는 신뢰성 기술이 차후 이동통신 표준에 채택될 수 있을 것으로 기대된다.

V. 지역/이동/구현 한계

1. 3GPP 지연감소 기술

3GPP 표준화 단계에서는 종단 간 지연을 감소하기 위해서 Rel-14부터 Rel-16에 이르기까지 무선규격을 논의하고 있다. 특히 Rel-16에서는 공장 자동화 시나리오, 전력 분배, 자율차량 조절 등을 주요 응용 분야로 선택하고, 지연뿐만 아니라 신뢰도에 대한 요구 조건을 만족하기 위해서 기술을 개발하고 표준화하고 있다.

가. 신호처리 지연 감소

문제점중에서의 지연을 적절적으로 감소하기 위해서, OFDM 싱블의 부반성파 간격이나 주파수 간격을 조절할 수 있다. 이는 더욱 짧은 전송시간 간격(Short TTI) 을 의미하여 문항중에서의 지연을 감소할 수 있다. 예를 들어, OFDM 싱블의 부반성파의 간격이 15kHz인 경우에는 14개의 싱블이 1ms로 짧아지만, 부반성파 간격을 60kHz로 변경하면 14개의 싱블이 1/4msec로 감소한다. NR 규격은 동작 주파수 대역에 따라서 지원하는 부반성파 간격을 구분하고 있으며, 6GHz 미만의 대역에서 동작하는 경우, 15kHz, 30kHz, 60kHz 로 데이터를 송수신할 수 있고, 6GHz 이상의 대역에서 동작하는 경우, 60kHz, 120kHz로 데이터를 송수신할 수 있다.

문제점 절차에 걸리는 시간을 줄이기 위해서, 단말의 처리능력(Capability)을 규격에서 정의하고 있다. 특정한 상황에서 단말이 처리하는 시간을 싱블의 개수로 정의하고 있으며, 기지국은 이에 따라서 최소한의 시간으로 절차를 수행할 수 있다. 또한 단말은 기지국으로부터 제어 정보를 더 자주 수신할 수 있도록, PDCCH를 복호화는 능력도 항상시기 위해서, 기지국이 모든 OFDM 싱블에서 PDCCH를 전송할 수 있는 등의 동적으로 물리체계에 관여할 수 있다.

나. 무력화 전송

단말이 기지국으로부터 PDCCH를 매번 성공적으로 수신한다면 종단간 지연 시간을 상당히 줄일 수 있지만, 단일 PDCCH의 수신 성공이 낮은 경우에는 단말이 데이터를 송수신할 수 없다. 이러한 경우, 단말이 절차를 수행할 수 없으므로 종단 간 지연시간이 증가한다. 더욱이 상황문제의 경우는 단말이 스케줄링을 요청하는 전차를 수행하기 때문에 하향링크보다 지연시간이 증가한다. NR 규격에 의하면, 기지국은 단말에게 자원할당을 미리 전달하고, 필요한 경우에는 별도의 제어 채널이 필요하지 않더라도 하향링크 데이터 또는 상향링크 데이터를 전송할 수 있다. 공장자동화 등의 시나리오가 갖는 트래픽은 작은 크기의 패킷을 일정한 주기를 가지고 반복적으로 발생하는 특성을 갖기 때문에 PDCCH 등의 제어 정보를 생략할 수 있다. 또한, NR 규격은 수신품질을 높이고 자원의 효율성을 높이고자 데이터를 반복하여 전송하는 절차도 지원한다.

다. 다중 트래픽의 동적인 다중화

NR 규격에 의하면, 홀 이상의 품질을 지원하는 경우에 비해, 더 빠르게 지원해야 하는 트래픽은 일반적인 트래픽보다 더 우선시하여, 무선 자원의 일부 영역을 동적으로 사용한다. 이러한 경우, 일반적인 트래픽은 전송량이 감소할 여지가 있으며, 이를 최소화하기 위해서 NR 규격에서는 데이터를 전송불록보다 더 세분화하여 부호블록의 단위로써 스케줄링하거나 또는 무선 자원의 일부 영역의 채널을 시그널링함으로써 단말이 부호화/복호화
과정에서 해당 영역에서 전송하거나 수신한 데이터를 별도로 처리할 수 있다.

2. 이동 환경

5G 규격의 주요 요구사항 중 하나는 고속 이동체에서 도 일정 수준의 전송률을 확보하는 것이다[42]. 고속 이동체 시나리오는 차량과 기지국 간 동신과 같은 일반적인 시나리오 외에도 최근 들어 언급되고 있는 하이퍼루프와 같은 초고속 이동체의 등장에 따라 더욱 중요한 요구사항이 되고 있다[43]. 이에 따라 고속 이동 환경에 따른 높은 도플러 효과의 영향하에서도 신뢰도 높은 서비스를 제공하기 위한 많은 연구가 진행되고 있으나, 기존 OFDM 과정을 그대로 유지하는 5G의 주요 요구 사항 중 하나인 V2X 및 고속 열차 등과 같은 고속 이동체와 관련된 새로운 요구사항을 만족시키기 어려울 것으로 예상된다.

예를 들어 5G Phase 2에 포함된 V2V 시나리오에서, 일반적으로 차량들은 고속으로 이동하면서 다른 차량으로 신호를 전송 또는 방송하고 수신 차량은 셀룰러 통신의 일반적인 HARQ 재전송 방식을 사용하는 것이 어려우므로, 한 번에 매우 높은 동신이 이루어져야 한다. 또한, 다른 예로, OFDM의 성능이 매우 뛰어지는 500km/h의 이동 속도에서 매우 높은 전송 용량을 요구하는 고속철도 시나리오 역시 기존 OFDM의 한계가 될 것으로 예상된다.

기존의 OFDM은 CP를 이용하여 다중 경로에 따른 지연으로 인한 ISI 효과를 극복하지만, 도플러 효과의 경우는 일정 수준 이상의 도플러 효과로 인한 ICI에 의한 성능 저하를 피할 수 없게 된다. 고속 이동에 따른 ICI에 의한 기존 OFDM의 성능저하를 극복하기 위한 방향 중 하나로 OTFS 과정이 2016년 3GPP 표준화 회의에서 소개되었다[44]. 이 방식은 기존의 1차원 무선 체널에 도플러 특성을 나타내는 두 번째 차원을 추가하여 체널 모델을 보완한 방식으로, 체널의 시간 및 주파수 변화에 비해 안정적이고 천천히 변하는 지연 및 도플러 변화를 관찰하여 보다 간결하게 체널을 표현할 수 있다는 장점이 있다. OTFS 방식은 정보 신호를 지연-도플러 좌표계에서 매핑한 후 시간-주파수 좌표계로 변환하여 전송하는 방식으로, 다중 경로에 의한 시간 지연 및 높은 도플러 효과에 의한 체널 영향을 지연-도플러 좌표계에서 효과적으로 처리한다는 점이 특징이다.

OTFS 방식은 Symplectic 푸리에 변환이라고 하는 2차원 푸리에 변환을 이용하여 신호 다중 경로 채널을 시간과 도플러를 기저로 하는 채널로 변환하는 것을 기본으로 하는데, 수신단에서 역변환과 과정과 동시에 진행되어 구현 단계에서의 고속 처리가 가능하다. 또한 OTFS 방식은 기존 OFDM 시스템에 전처리 및 후처리 블록을 추가하는 방식으로 구현이 가능해서 기존 OFDM 기반 시스템과의 호환성도 기대할 수 있다[45].

3. 닥터링을 활용한 구현 한계

일반적으로 성능을 최적화하기 위해 복잡한 알고리즘을 도입할수록 실제 구현이 어렵다. 예를 들어, 채널부호화에서 최적 복호 방식은 Maximum a Posteriori (MAP) 복호 방식이나, 부호키가 길어질수록 지수적으로 복잡도가 증가하기 때문에 실제 통신시스템에 도입하기는 거의 불가능하였다. 따라서, 최적 성능에 근접하지만, 복잡도가 낮은 알고리즘이 통신시스템에 구현되어 왔다.

그러나, 닥터링을 비롯한 기계학습 기술이 눈부신 발전을 거듭함에 따라 고도의 복잡도를 가지는 방식들을 기계학습을 활용하여 구현하기 위한 연구가 다양하게 이루어지고 있다[46]. 닥터링 등 기계학습, 특히 지도학습은 입력에 대해 원하는 출력이 나오도록 하는 역할을 하므로, 한마디로 표현하면 핵수 근사화라고 할 수 있다. 통신시스템 역시 입력에 대해 원하는 출력이 나오는
역할을 하기 때문에 담러닝과 비슷한 역할을 한다고 할 수 있다. 통신시스템을 담러닝을 구현하기 위한 접근은 크게 두 가지로 나눌 수 있다. 하나는 통신시스템은 입력 정보는 다양한 채널의 영향을 통해 변형된 후 원래의 입력을 복구하는 과정으로 해석하여, 입력과 출력 중간 간을 autoencoder로 보는 것이다[47]. Autoencoder는 인공신경망을 활용하여 입력 x에 대해 중간 계층에서 압축 등을 통해 최적의 코드 방식을 학습하여 같은 출력 x가 나오는 방식으로 통신시스템과 같은 부분이 없다. 통신시스템은 중간 간 autoencoder로 보면, 채널 혹은 장치 특성 등에 의해 전송 도중 발생하는 비선형 변환을 학습을 통해 극복할 수 있을 것으로 기대된다. 다른 하나는 통신시스템을 구성하는 각 요소 블록에 대해 담러닝을 통해 구현하는 것이다. 예를 들어 채널부호화의 경우, 일반적으로 어려운 복호화 블록을 담러닝을 적용할 수 있다[48].

담러닝은 학습 단계에서는 많은 연산과 시간을 필요로 하나, 학습이 끝난 인공신경망을 실제 활용하는 단계에서는 간단한 행렬 연산만 수행하면 되기 때문에, 실시간으로 동작하는 통신시스템에 바로 적용 가능하다. 고도의 복잡도를 가진 알고리즘을 실시간으로 통신시스템에 구현하는 것이 매우 어려웠으나, 담러닝을 활용하면 그동안 구현이 어려웠던 부분들에 대한 극복이 가능할 것이다.

VI. 맥락말

본고에서는 이론, 용량, 지연, 접속, 이동속도, 구현 등 다양한 무선통신기술 한계를 찾아보고, 한계를 극복하기 위한 다양한 무선통신기술의 시도과 동향을 살펴보았다.

약어 정리

- 3GPP: 3rd Generation Project Partnership
- APSK: Amplitude & Phase Shift Keying
- CDL/TDL: Cluster Delay Line/Tapped Delay Line
- CP: Cyclic Prefix
- eMBB: enhanced Mobile Broadband
- HARQ: Hybrid Automatic Repeat Request
- ICI: Inter-Carrier Interference
- IEEE: Institute of Electrical and Electronics Engineers
- IIoT: Industrial Internet of Things
- IMT: International Mobile Telecommunications
- InP: Indium Phosphide
- ISI: Inter Symbol Interference
- ITU: International Telecommunication Union
- KPI: Key Performance Index
- LO: Local Oscillator
- LOS: Line of Sight
- mMTC: massive Machine Type Communications
- NLOS: Nonline of Sight
- NR: New Radio
- OFDM: Orthogonal Frequency-Division Multiplexing
- OFDMA: Orthogonal Frequency Division Multiple Access
- OOK: On Off Keying
- OTFS: Orthogonal. Time Frequency & Space
- PDCCH: Physical Downlink Control Channel
- PSK: Phase Shift Keying
- RF: Radio Frequency
- QAM: Quadrature Amplitude Modulation
- Rel-16: Release-16
- SiGe: Silicon-Germanium
- TTI: Transmission Time Interval
- URLLC: Ultra Reliable Low Latency Communications
- V2X: Vehicle to Everything
참고문헌

[29] J. Li et al., “On Social-Aware Content Caching for D2D-Enabled Cellular Networks with Matching Theory,” ac-

[34] 3GPP TS 38.211 v15.4.0, “NR: Physical channels and modulation,” Jan. 2019.

